Search found 5 matches
- Mon Sep 14, 2009 2:17 pm
- Forum: Common Lisp
- Topic: Clozure CPU usage limit?
- Replies: 7
- Views: 11074
Re: Clozure CPU usage limit?
The code below consistently uses about 140% cpu on a core2 duo machine (i.e., two cores). I have other code which does GUI drawing in addition to processor intensive things on other threads that regularly gets near 200% cpu on a dual core machine. IOW, CCL under Mac OS X 10.5 and 10.6 has no problem...
- Fri Feb 27, 2009 11:03 pm
- Forum: Common Lisp
- Topic: CLisp Programming LISP program that produce a mirrored list
- Replies: 20
- Views: 47741
Re: CLisp Programming LISP program that produce a mirrored list
Code: Select all
(defun mirror (list)
(reverse
(loop for elt in list collect
(if (consp elt) (mirror elt) elt))))
(defun mirror2 (list)
(reverse
(mapcar
(lambda (elt)
(if (consp elt) (mirror elt) elt))
list)))
- Tue Feb 03, 2009 12:01 pm
- Forum: Common Lisp
- Topic: Refactoring a prime number generator generator
- Replies: 5
- Views: 12450
Re: Refactoring a prime number generator generator
Sorry, bad edit. This one works again: (defun make-prime-generator () (let ((most-recent-prime 1)) (lambda () (flet ((prime-p (n) (not (loop for i from 2 to (isqrt n) when (integerp (/ n i)) return t)))) (loop for j from (1+ most-recent-prime) when (prime-p j) do (setf most-recent-prime j) (return j...
- Mon Feb 02, 2009 11:46 pm
- Forum: Common Lisp
- Topic: Refactoring a prime number generator generator
- Replies: 5
- Views: 12450
Re: Refactoring a prime number generator generator
this is a little clearer (defun make-prime-generator () (let ((most-recent-prime 1)) (lambda () (flet ((prime-p (n) (loop for i from 2 to (isqrt n) when (integerp (/ n i)) return nil)))) (loop for j from (1+ most-recent-prime) when (prime-p j) do (setf most-recent-prime j) (return j)))))
- Mon Feb 02, 2009 3:10 pm
- Forum: Common Lisp
- Topic: Refactoring a prime number generator generator
- Replies: 5
- Views: 12450
Re: Refactoring a prime number generator generator
? (defun make-prime-generator () (let ((most-recent-prime 1)) (lambda () (labels ((prime-p (n) (not (loop for i from 2 to (isqrt n) when (integerp (/ n i)) do (return t))))) (loop for j from (1+ most-recent-prime) when (prime-p j) do (setf most-recent-prime j) (return j)))))) MAKE-PRIME-GENERATOR ?...